
The results obtained at small gas velocities are in qualitative agreement with the exist- 
ing data for single-phase flow [6i. In a two-phase film flow, the gas component has only 
slight influence on the temperature distribution in the film, but, by decreasing the thick- 
ness of the film, increases the temperature gradient Within it. 

NOTATION 

r, x, radial and axial cylindrical coordinateS; H, length of the section of tube con- 
sidered; R, tube radius; y = R--r~ ~, film thickness; T, temperature; w, velocity; a, thermal 
diffusivity; Rex = 4w~v~1; Re2 = 2w2Rv~X; a* = a~-x; L = HR-X; ~ = xR'1; h = 6R-Z; r = yR'1; 
u = ww -I. Indices: Z = i, liquid; I = 2, gas; c, ~, O, L, R, values at the tube wall, phase 
interface, tube inlet, tube outlet, and flow axis; a bar over a symboldenotes the mean value. 
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APPLICATION OF A CONSERVATIVE DIFFERENCE EQUATION 

TO DETERMINE NONSTATIONARY HEAT FLUXES 

Yu. I. Azima, Yu. I. Belyaev, 
and M. V. Kulakov 

UDC 536.629.7 

The possibility of practical utilization of a conservative differenceequation of 
heat conduction, obtained by an integrointerpolation method, for the automatic 
determination of nonstationary fluxes is analyzed. 

The continuous automatic determination of the heat flux is an important problem in the 
study of nonstationary heat transfer, particularly for the determination of the thermophysi- 
cal  p r o p e r t i e s  (TPP) of  subs tances .  

S u f f i c i e n t l y  complex a lgor i thms tha t  can be r ea l i z ed  only  by using d i g i t a l  computer 
f a c i l i t i e s  are u t i l i z e d  in ex i s t i ng  h igh 'accuracy  methods of  determining the heat  f lux  den- 
s i t y  described in [i, 2]. However, utilization of analog apparatus for th~s purpose is more 
logical from the viewpbint of fast-response and the simplicity of technical realization. Such 
an approach to the determination of the heat flux density, based onthe solution of the in- 
verse heat conduction problem (IHCP) by using analog facilities was apparentlyproposedfirst 
in [3], but it is impossible to acknowledge the method mentioned as correct. 

The simplest method of determining the heat flux, which permits its measurement in ana- 
log form during experiment, is based on the following interpolation of the Fourier equation 
[4]:  

~,I~=L (i) 
q(O, ~) = ~ (x, },x=0 

L 

r D' I. Mendeleev Moscow Chemicotechnologlcal Institute, Novomoskovskii Branch. Trans- 
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However, this formula results in inadmissibly large errors in investigations associated with 
the determination of rapidly changing fluxes. 

A method is examined in this paper, for the determination of nonstationary heat flux 
densities at the boundary sections of a plate by means of results of temperature measurements 
at internal points and on the boundaries, which is free, to a certain extent, of the listed 
disadvantages. The problem of determining the boundary fluxes for it can be formulated as 
follows. 

There is a homogeneous plate of thickness L with known heat conduction A and bulk speci- 
fic heat C in which the heat propagation from a source outside the plate is subjected to a 
linear one-dimensional heat-conductlon equation 

o 0, 
C t(x, ~ ) = ~  O~ i t(x, ~), xE[O, L]. (2) 

There is information about the temperature differences measured at the plate boundaries 
x=0 t (x, ~)[.=L = Ar  (~), (3) 

and the temperatures measured at m internal points 

t(xh, ~)=Th(~) ,  O ~ x ~ L  ( k = O ,  1 . . . .  , m ~ l ) .  (4) 

It is required to determine the heat flux density passing through the plate boundary 

q (o, ~) = -  ~ a t (o, ~), 
OX 

0 t(L, ~). 
q(L, T ) ~ : ~ %  Ox 

(5) 

(6) 

To solve this problem we use a conservative difference heat-conduction equation obtained 
by an integrointerpolation method [5]. Let us show the procedure for obtaining such an equa- 
tion. We apply the operator 

to bo th  sides of (2). 
ing equation 

x 

1 Sdx .[fdx (7) 
I (/) ==~ "i" o o 

Substituting (5) in the expression obtained, we arrive at the follow- 

~_ L x C 0 CO) S dx [ t (x, ~') da'. ( o , ~ ) =  t(x, J i l L +  L 0 ~ o  6 

Let  us r e p l a c e  t he  i n t e g r a n d  t ( x ,  "r) in  (8) by a Lagrange  i n t e r p o l a t i o n  p o l y n o m i a l  [6] 

m-, (9) 

k~O 

where ~_k~ (x) is a polynomial of degree m- 1 determined by the equalities 

Q ~ k ~  (X--Xo)(X--XO . ( x - - x ~ _ , ) ( x - - x h + , ) . . . ( x - - " m - O  (10) 
(xh --Xo) (xk - -  x d . . .  (x~ - -  xh-~) (xk - -  xk+ 1) . . .  (x~, - -  x,,_ O" 

We consequently obtain a conservative difference heat-conduction equation from which the 
heat flux density q(0, T) entering through the plate boundary can be determined: 

m--I 
c a ( l l )  "v x=o X phi (xk' ~)" q(O, *)=---ff- t(x, )[~=L + ~ OX" o 

It is easy to show that an analogous difference equation can be obtained to determine the 
heat flux density q(L, r) emerging through the plate boundary 

(12) t(x, jlx=t. X p~t(L--x~, ~c). 
T~|x=O C 0 m~l 

q(L, "~) = --~-- L O'c 
o 

We substitute (3) and (4) into the difference equations (ii) and (12) and obtain computa- 
tional formulas to find the boundary heat-flux densities 
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TABLE I. Time Dependence of the Methodological Om(T) and 
Summary Oq(T) Errors in Determining the Heat Flux in a Sec- 
tion with the Coordinate x = 0 and x = L ffi I0 -s m 

I[, 

q (x, ~}, 
Wlm z" K 
x=0 [ x = L  

1 451,36 94,6 
2 319,2 [ 146, 1 
4 225,7 [152,7 
9 150,5 126,5 

25 I 90,3 [ 84,8 

~M(T)' W/m 2.K ] 
x=O I --x~L = 5[ 

l 2 I 2 

1,5 66,8 10,1 1106 
0,3 26,3 10,1 ] 46,7 
0,I 8,2 0,05 I 15,7 
o,ool 1,85 0,004] 3,6 

aq (~), W/m ~- . K 
X=0 I x = L  ,,, 

9 
4,6 
2,4 
1,5 
0,9 

156 
67 
26,4 
8,4 
1,9 

13 I 201 5,8 106 
3, 1 47 
1,6 16 
0,9 3,8 

2 

--.- ~ ) 

7 3 

Fig. I. Apparatus to measure 
nonstationary heat fluxes. 

C 0 m-, (13) 
q (0, T) = ~'. AT (T) + - -  ~ phr~ ('Q, 

L L 0"~ o 

C O m - - I  * 

q(L, T)=  ..... AT(x) Z paT~('Q. (14) 
L L o~ o 

As is seen from (13) and (14), the desired heat flux is a linear function in the temperature 
m - - I  m - - I  

dlfference AT(T) and the rate of change of the parameter EpI~TI~(T) (~0p~r~(~)), which assures a 
0 

sufficiently simple procedure for its determination. 

Let us examine the error in determining the heat flux density be means of the proposed 

computational formu)a (13) (the error in (14) is expressed analogously). Let us extract 
particular errors in measuring the temperature difference AT(T) and the rate of change in 

L x 
time of the integral parameter ! d x f t ( x ,  ~)a.v We assume that these errors are uncorrelated with 

respect to each other. Them the total error can be determined from the formula 

k Y, / t 

The second te rm i n  t h e  t o t a l  e r r o r ,  namely ,  Oy2, i s  o f  i n t e r e s t  i n  t h i s  e x p r e s s i o n .  Be- 
cause  t he  o p e r a t o r  ~/3T i s  n o t  bounded,  t h i s  e r r o r ,  and t h e r e f o r e  t he  t o t a l  e r r o r  Oq i n  d e -  
t e r m i n i n g  t h e  h e a t  f l u x ,  can a l s o  be i n f i n i t e .  

To e l i m i n a t e  t h i s  phenomenon, we use  one o f  t h e  n a t u r a l  r e g u l a r i z a t i o n  modes, which i s  
m - - I  

approximate calculation of the rate of change of E~kT~(~): 
0 

m - - I  m - - I  m - - l  

o ~_ o o (16) 
dx A~ 

w i t h  p r e l i m i n a r y  agreement  be tween t h e  c o m p u t a t i o n a l  d i f f e r e n t i a t i o n  s p a c i n g  AT and the  e r r o r  
o f  t he  i n p u t  d a t a  [1 ] . .  I n  t h i s  c a s e  t h e  e r r o r  i n  d e t e r m i n i n g  the  r a t e  o f  change o f  t he  i n -  

L z 
gegral parameter fodx~ot(x, T)dx can be found from the following expression: 
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m--I 

0 

A modification of this method of eliminating the instability is the approximate deter- 
mination of the derivative with respect to the time in analog form, for example, by using 
apparatus with the transfer function [7] 

II7 (p) = Kp (18) 
T p + l  

Selecting the coefficients K and T in an appropriate manner, stable operation of this differ- 
entiator and sufficiently high differentiation accuracy can be achieved. AccordiBg to [8], 
analog differentiating apparatus can assure obtaining results with error at a 1% level. Then 

L x 

the error of measuring the rate of change of the integral parameter/dxft(x, ~)dx can be writ- 

ten in general form as 

Let us go over to an estimate of the methodological error Oo in determining the rate of 
L 

change of the integral parameter I dx j t(x, T)dx We represent it in the form 

o o (20 )  

Oo (~) aA (~) 
ax 

where 

~L x m - - I  

A (~) = .I dx j' t (x, x) dx - -  ~.~ P~Th (~). (21) 
0 0 0 

We w i l l  consider the approximate formula 
L x m - - I  

S dx .!' t(x, "r)dx ~ XphT~('c) (22) 
0 0 0 

to be exact for a zero power polynomial 

Po(x, "r) = ao = t(x, $)Ix=o (23) 

and the rate of change of the heat flux density passing through the plate during the experi- 
ment not to exceed a certain constant M: 

[- -~q(x ,  x)[~<~M; x610, L]; 't E[O, "rl]. (24) 

We expand the function t(x, "t) in powers by the Taylor formula 

L a (25) 
t(x, ~) = t(x, "01.=0 + ~ K(x- -  z) ~ t(z, ~)dz, 

0 

where 

K(x- -z )={  I x--z~/O, 
0 x - - z < O ,  

We s u b s t i t u t e  (25) i n t o  (21) and t a k i n g  accoun t  o f  (26) ,  we have 

L x ". L T X  ra-- l ~ 

0 0 0 D O 

• t (z, ~) dz = "dx ~ d x - -  phK (xh--  z) -~x t (z, T) dz = 
z 

o 2 ~'o p~K (xk - z) t (z, ~) az = o y '~ (z) t (z, ~) az. 

S u b s t i t u t i n g  (27) i n t o  (20) ,  we o b t a i n  a f t e r  s imple  m a n i p u l a t i o n  

% (T) --= ~ ! F (z) q (z, x) dz. 

(26) 

(27) 

(28) 
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Taking account of the information about the magnitude of the maximal rate of change in 
the heat flux density M, ioe., the inequality (24), we turn to an estimate of the methodologi- 
cal error in determining the boundary heat flux density 

M L 
las( )l [ IF(z)ldz = M= (29) 

La 

Therefore, the inequality (29) permit estimation of the methodological error in deter- 
mining the boundary heat flux density on the basis of information about themaxlmal rate of 
change M of the heat flux density in the plats, its thickness L, the thermal diffusivity co- 
efficient a of the material from which the plate is fabricated, and the coordinates x k of 
the nodes atwhich the temperature Tk(T) is measured. 

It can beshown that the diminution in the methodological error of determining the heat- 
flux density when using (ii) as compared to (I) is 

m--I 
_ c o (3o)  

L 0~ 0 

To illustrate the accuracy of the method proposed, the methodological Om and the sum- 
mary ~q errors in determining the flux density passing through a section bounding the inter- 
val [0, L] of a semiinfinite body with heat conduction ~ ffi 0.32 W/m.K and volume specific 
heat C ffi 2.10 s kJ/mS-K in a known temperature field 

( l ~ a T )  = eric(n) (31) t(x, z)=l--erf 2 

are presented in the table when the following computational formulas are utilized: 
( ?  

q (0, "t;) = --1- AT (T) ~- ~ - -  • 
L L Or 

Column 1 

Column 2 

L 2 x +], 
q(L, " r ) : ~ A T ( + )  C 0 • 

L L Or 

L ~ 

q(0, " 0 = q ( L ,  ~ ) =  ~', AT('~). 
L 

(32) 

(33) 

(34) 

The following errors in the input data were taken: 1% in the measurements of the tem- 
perature difference AT(T), and 5% in the measurements of the rate of change of the parameter 
m--I 

~ pfl~(T). The true values of the heat flux density were determined from the formula 

o = - -  Z 0 %cp (n) q(x, t(x, . (35)  
ox "2 

Calculations were performed by using tables of the Gauss function erf (n) and its deriva- 
tive ~(n)=d err (n)/dn with the above-mentioned errors taken into account. The surmnary error 
Oq was determined from (15) and (19) (see Table i). The high accuracy in determining the 
heat fluxes can be judged from the example presented. 

The apparatus displayed in the figure can be used for automatic measurement of the 
boundary heat flux density passing through a plate. The apparatus contains a primary trans- 
ducer, which is the plate 1, from a material with known TPP, a differential thermocouple 2 
measuring the temperature difference on the plate boundaries the thermocouple 3 whose work- 
ing Junctions are mounted over the plate thickness at given points Xk, the thermal emf trans- 
ducers 4, 5, 6, where the transductlon factors of 5, 6 are proportional to the weights Pk, 
the adders 7, 8, the apparatus 9 to measure the rate of change of the input signal. As fol- 
lows from the description, this apparatus realizes one of the formulas (ii) or (12) depending 
on the boundary at which the heat flux density is being measured. 

In conclusion, let us note the main achievements of the methodology of determining the 
heat-flux density, based on application of a conservative difference heat-conductlon equation. 
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Firstly, the possibility of estimating the error in determining the heat-flux density by 
means of the analytic expressions (15), (17), (19), which affords a possibility of construct- 
ing heat meters with given accuracy. Secondly, simple computational formulas permitting 
the realization of continuous measurement of nonstationary heat fluxes during experiment by 
using analog facilities. 

NOTATION 
i x 0 L--x 0 t x 

ss Is p h =  dx Q ~ ) i ( x ) c l x ; p h = .  dx . Q ~ k ) _ l ( L - - x ) d x ,  weighting factors; g~=AT(~); g 2 = ~  ~ t ( x ,  ~) 
0 0 L L ,. 0 

dx; ~Yx, error in measuring AT(T); ~y2' error in determining Y2; a, thermal diffusivity co- 
efficient; oo, methodological error in determining Y2; ok, error in measuring ~(T); e, error 
in determining the derivative due to piecewise-linear interpolation; and Od, error in ap- 
proximate analog differentiation. 
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DERIVING THE THERMAL CONTACT RESISTANCE 

FROM THE SOLUTION OF THE INVERSE HEAT-CONDUCTION 

PROBLEM 

E. A. Artyukhin and A. V. Nenarokomov UDC 536.24.02 

The construction of an iterative computational algorithm is considered, and results 
of mathematical modeling of the solution of the coefficient inverse problem of heat 
conduction by deriving the dependence of the thermal contact resistance on the tem- 
perature are given. 

Consider the process of heat conduction in a two-layer infinite plate with known thermo- 
physical characteristics of the layers and specified initial and boundary conditions of the 
first kind. 

In real situations, there is contact heat transfer between the layers at the boundary. 
This means that, in numerical modeling of the heat-conduction process in the system, the 
energy-matching relations at the boundary between the layers must be considered, taking ac- 
count of contact thermal resistance [i]. It is assumed that the heat conduction in each layer 
is described by a homogeneous heat-conductlon equation. Then the mathematical formulation 
of the problem of heat conduction in a two-layer plate takes the following form for the given 
case 

4 Translated from inzhenerno-FizicheskiiZhurnal, Vol. 46, No. 4, pp. 677-682, April, 1984--? 
Original article submitted January 3, 1983. 
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